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ABSTRACT

Knowledge of the number of people in a building at a given time
is crucial for applications such as emergency response. Sensors can
be used to gather noisy measurements which when combined, can be
used to make inferences about the location, movement and density of
people. In this paper we describe a probabilistic model for predict-
ing the occupancy of a building using networks of people-counting
sensors. This model provides robust predictions given typical sen-
sor noise as well as missing and corrupted data from malfunctioning
sensors. We experimentally validate the model by comparing it to a
baseline method using real data from a network of optical counting
sensors in a campus building.

Index Terms— sensor networks, occupancy models, graphical
models, Bayesian inference

1. INTRODUCTION

As sensors capable of monitoring daily human activity become in-
creasingly affordable and ubiquitous, there is a corresponding need
for algorithms capable of making sense of the resulting sensor obser-
vations across a wide variety of applications. One important subclass
of such data are “count data,” in which the observed signals consist
of integer counts of the number of occurrences over time of a partic-
ular type of human activity. Examples include magnetic loop coun-
ters for monitoring freeway traffic [1], optical tripwires (or “people
counters”) for counting the number of people passing a particular
point [2], and pre-processed video or optical motion detectors for
monitoring a specific area [3].

Sensors that record count data often contain strong patterns re-
flecting the underlying rhythms of human activity. This periodic,
predictable activity is referred to as “usual activity” in this paper.
What makes these measurement streams complex, however, are ran-
dom bursts of unusual or “event” activity, appearing as unusually
high measurements (which can accompany a special seminar in a
building or a baseball game in a stadium), or unusually low mea-
surements (which might occur on a holiday).

In this paper, we extend earlier work on modeling count data
at a single sensor [2] to a multi-sensor environment. A probabilis-
tic model for each sensor, consisting of an inhomogeneous Pois-
son process for representing “usual” human activity and a hidden
Markov process for representing bursts of unusual behavior. We de-
scribe how several such models can be coupled together to solve the
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occupancy problem for a building, namely, to infer an accurate es-
timate of how many people are in a building given noisy count data
from its entrances and exits. The probabilistic nature of the model
makes it relatively robust to both sensor noise and to sensor failure
in the form of both missing and erroneous observations.

Obtaining accurate estimates of occupancy over time is an im-
portant component in many applications, including urban design and
planning, security monitoring, and crisis response. For example,
during a disaster crisis, information about the number of people and
their locations is critical to first responders for allocation and deploy-
ment of resources.

The paper proceeds as follows. We describe the data and a sim-
ple baseline model in Section 2. In Section 3, we first review the
probabilistic model for a single stream of count data, then show how
individual sensor streams can be linked to form a multiple-sensor
probabilistic model for building occupancy. Inference for the oc-
cupancy model follows in Section 4. Experimental evaluations to
demonstrate the effectiveness of the model are described in Sec-
tion 5, followed by conclusions in Section 6.

2. INFERRING OCCUPANCY FROM SENSOR DATA

Consider a trivial approach to occupancy estimation based on as-
suming that we have perfect information from a set of sensors about
the number of people entering and exiting at each door in a building,
i.e., no noise in the counts and complete coverage of all doors. Oc-
cupancy at time t is then simply the occupancy at time t−1, plus the
sum (across sensors) of the counts of people who have entered since
time t − 1, minus the sum of counts of people who have exited.

Fig. 1 shows the result of estimating the building occupancy over
a 5 week period using this trivial method. This graph is derived us-
ing data from optical “people counter” sensors that report aggregate
counts every 30 minutes at 6 doors for a particular building (CalIT2
on the UCI campus). We immediately see from Fig. 1 that the sim-
ple approach produces very poor results, with a systematic negative
trend in the estimate of the number of people in the building.

This problem arises because the sensors are imperfect, with noise
corresponding to both under- and over-counting. The sensors used
in Fig. 1 are pairs of optical sensors that register a count when an
optical beam is interrupted. They are spaced in such a way as to de-
termine whether a person is exiting or entering the building. “Non-
human objects” can cause over-counts such as the one captured in
the left panel of Fig. 2. More commonly, people entering in groups
at the same time can cause under-counting such as is captured in the
right panel of Fig. 2.

In addition, a sensor can fail outright. One of the largest discrep-
ancies in Fig. 1 occurs at the beginning of week 5 and is partly due
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Fig. 1. An estimate of building occupancy assuming the measured
values have no errors, so occupancy at time t equals that at time t−1,
plus all incoming counts and minus all outgoing counts. Biases and
miscounts can cause large systematic errors over a period of time.

Fig. 2. The left panel shows an example of a double count at the
loading dock entrance of the building; the right panel shows an ex-
ample of a missed count at the front door.

to a malfunction that occurred in a sensor at a door that is used more
frequently used for incoming traffic than outgoing traffic. Like many
systems, malfunctions for this type of sensor result in erroneous val-
ues, often zero, rather than any kind of explicit error signal.

One approach to counter the effects of the measurement noise
is to simply enforce two constraints on the trivial estimation method
above: (1) that occupancy can never be negative, and (2) that early
every morning the building population should be zero. While in-
corporation of these types of constraints can improve the estimate
quality, the results of this approach (which we refer to as the base-
line method) are still quite inaccurate (see Section 5).

In the next section we outline a probabilistic model for the prob-
lem of estimating occupancy. This approach allows us to model
sensor noise in a systematic manner, combine uncertain information
from multiple sensors, leverage our prior beliefs about occupancy at
particular times of the day, use statistical learning techniques to learn
the parameters of our model from historical data, and systematically
infer a probability distribution for occupancy over time conditioned
on observed sensor data.

3. MODELING MULTI-SENSOR COUNT DATA

We use the framework of directed graphical models to capture re-
lationships among different variables and parameters of interest. In
this section we outline the structure of the model and in the follow-
ing section we describe the inference process. Nodes in the graphical
model represent random variables and probabilistic relationships are
encoded as conditional distributions of child nodes given the values
of their parent variables. The model contains unobserved (latent)
variables representing quantities of interest (such as the true occu-
pancy at time t) and parameters (such as Poisson rates); we are inter-
ested in reasoning about both conditioned on the observed evidence,
i.e., the counts measured at sensors. Unless stated otherwise count
variables such as Nt take non-negative integer values. The subscript
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Fig. 3. Graphical model for a single stream of count measurements.
Here, Nt represents the true number of counts at time t, Bt a noisy
observation, NU

t the counts due to “usual” activity (modeled by
Poisson rate λt) and NE

t any counts due to an event (modulated
by the Markov process zt).

t refers to a discrete time index, which for the count data used in
this paper are spaced at half-hour intervals (the sensor report time),
and a count such as Nt corresponds to an aggregate count over the
half-hour prior to t.

Modeling a single sensor. We first describe a probabilistic model
for a single sensor (whose graph is shown in Fig. 3); we then extend
the model to multi-sensor data. Node Bt represents an observed
count at time t for a particular sensor, a noisy version of the true
(unobserved) count Nt for that sensor:

Bt = Nt + ΥO
t − ΥU

t (1)

The number of undercounts ΥU
t and overcounts ΥO

t are modeled us-
ing separate binomial distributions: ΥO

t ∼ Bin(Bt, vO) and ΥU
t ∼

Bin(Nt, vU ), subject to the constraint in Equation (1). This allows
the the expected number of undercounts and overcounts to increase
with the number of people using a door. In our experiments, we set
vO = 1/70 and vU = 1/20 based on empirical observations of
over- and undercounting.

The true count for a sensor, Nt, is modeled as the sum of two
Poisson processes, where the two processes reflect usual activity
for that sensor and bursts of abnormal activity (“events”): Nt =
NU

t + NE
t .The component for usual activity, NU

t , is modeled as a
non-homogenous Poisson process. The event component NE

t is an
additional Poisson contribution governed by a Markov process, zt,
indicating whether or not an event is taking place at time t. zt takes
three values corresponding to an event with fewer people than nor-
mal (zt = −1, e.g., a holiday), no event (zt = 0), or an event with
more people than normal (zt = 1, e.g., a non-recurring large meet-
ing in the building). P (NE

t |zt) is Poisson with an unknown rate
parameter for zt = −1 and zt = 1, and forces NE

t = 0 for zt = 0.
The non-homogenous Poisson process NU

t depends on a time-
varying rate parameter λt = λδtηt, where the three components
correspond to the average rate, λ, an adjustment for the day of week,
δt, and an adjustment for the time of day, ηt (e.g., [4]).

For the event process, the Markov chain on z allows event per-
sistence, which can lead to significantly better event detection per-
formance compared to simpler threshold methods [2]. The transi-
tion matrix A defining the conditional distribution P (zt|zt−1) is also
treated as a random variable in the graphical model. Except where
stated, all prior distributions were chosen as in [2].

Inferring occupancy from multiple sensors. Each door to a build-
ing has separate data streams for the entrance (“in”) counts and the
exit (“out”) counts. The true (unobserved) count for all of the in
sensors at time t is represented by SI

t , and similarly SO
t for the out

sensors. SI
t and SO

t are deterministic sums of the true count Nt
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Fig. 4. Linking the individual streams. (a) The sum node cor-
responding to the total building incoming (entry) flow. Θ repre-
sents the hidden parameters and variables specific to the individual
stream, indicated by the dotted line in Fig. 3. (b) Graphical model
for multiple-sensor building occupancy; total in and out traffic (SI

t ,
SO

t ) modulates occupancy Ot.

for each in and out sensor, respectively. The occupancy at time t is
denoted Ot, and is given by the sum of Ot−1 and ∆t = SI

t − SO
t ,

which is the true (unobserved) change in occupancy over time-period
t. These relationships are depicted in Fig. 4. For variables which
take on countably infinitely many possible values (e.g., nonnegative
integers) and for which no closed form exists for the conditional dis-
tributions of interest, we use heuristics to reduce the range of values
under consideration.

We also include a geometric prior (with parameter set to .9 in
the results in this paper) on Ot for t = 3AM, encouraging the model
to leave few or no people in the building overnight. This helps to
offset any systematic bias in the measurement noise which if unac-
counted for could lead to ever-increasing or decreasing estimates of
the number of people in the building (see Fig. 1).

4. INFERENCE

Given the probabilistic model described in the previous section, we
now turn our attention to the inference problem, i.e., computing the
conditional probability of quantities of interest (such as the occu-
pancy Ot as a function of time) given both the observed measure-
ments Bt (at all doors across all times of interest) and the priors.
These quantities (the variables and parameters of the model) are
learned by inferring their posterior distributions using Markov chain
Monte Carlo (MCMC) sampling methods. In MCMC, we iteratively
sample each set of variables given the current sampled values of the
other variables in the model. After a sufficient number of iterations,
these samples converge to the true posterior distribution.

Given a value of the true count Nt for each stream, we sample λt

and zt as described in [2]. Then, given both λt and zt, we perform
a forward–backward sampling procedure [5], similar to that used for
zt, to draw the total occupancy Ot and the true counts Nt for each
sensor. In the forward inference pass, information flows from the
individual streams up to the occupancy node and is combined with
the belief about the occupancy found for the previous time slice. The
backward pass then samples values for each of these variables. Since
the graphical model is singly–connected given the λt and zt, this
procedure can be performed efficiently (in time linear in the number
of measurements).

Let us define Λ to be the set of all λt for all streams and time,
and Z similarly for zt. Now, we compute the posterior distribution

of Ot given Λ, Z, and the observed counts Bt. We first note that

p(Nt|Λ, Z, Bt) ∝ p(Bt|Nt)p(Nt|Λ, Z)

by applying Bayes’ rule and noting that Bt is conditionally indepen-
dent given Nt. We can then compute the distribution of the variables
St and ∆t via successive convolution1. If we define the evidence
Et to be the set of all observations Bt at any of the sensors, this
convolution process gives us the distribution p(∆t|Et, Λ, Z).

The updated posterior of occupancy at time t is then

p(Ot|E1:t) ∝
X

Ot−1,∆t

δ(Ot − Ot−1 − ∆t)πt(Ot)p(Ot−1|E1:t−1)p(∆t|Et)

where δ(k) = 1 for k = 0 and 0 otherwise (reflecting the determin-
istic relationship between Ot, Ot−1, and ∆t), and where πt(Ot) =
Geom(Ot; .9) when t = 3AM. We proceed forward in time to
the maximum (or current) time t = T , then sample OT , OT−1, . . .
backward to time t = 1. Given Ot and Ot−1, ∆t is deterministic;
the sum nodes St are sampled conditioned on their difference ∆t,
and the true counts Nt conditioned on their total St.

Given a sampled value for the true count Nt for each sensor
stream, the sampling for the stream parameters Λ and the stream
event process Z proceed as in [2]. Unlike [2], however, here the true
count value Nt can change between iterations as the constraints of
the occupancy model are enforced and as the belief about the true
counts of the other sensor streams change.

5. EXPERIMENTS AND RESULTS

The data used in our experiments come from a campus building with
six doors with optical people counters measuring the flow of peo-
ple in both the entrance and exit directions. Nine weeks of mea-
surements (6/11 to 8/12/2006) for each of the twelve streams were
used for learning the model. All of the inference experiments in this
section were run off-line, although on-line inference is a relatively
straightforward extension of the techniques described in this paper.

In each of the experiments, the occupancy model is compared
to a simple baseline method where two occupancy constraints are
enforced: (a) occupancy can not be negative, so if (Ot−1 +∆t) < 0
then Ot = 0; and (b) occupancy is reset every 24 hours, so that at
t = 3AM we have Ot = 0.

Sensor Noise. The examples in this section contrast the occupancy
model and the baseline method for days where the measured flow
of people in entering or exiting the building is disproportionately
larger than the flow in the opposite direction. This count difference is
caused by the normal day-to-day noise of the sensor measurements.

Fig. 5(a) shows a day where using the baseline method would
lead to the belief that approximately 50 people are in the building at
2:59 am. These 50 people are promptly forced to disappear via the
24 hour constraint. By smoothing, the occupancy model provides
a more believable prediction for the day. Although we do not have
ground truth, it is especially unlikely that the building held many
people this particular Friday night since the two following days are
weekend days with low activity and no large egresses.

1These operations are nominally O(d2) where d is the number of possible
values entertained for each variable, but can be made O(d log d) via the fast
Fourier transform [6].
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Fig. 5. (a) A day with more building entrance measurements than
building exit measurements; the preceding and subsequent days are
also shown for context. (b) Two days with more building exit mea-
surements than building entrance measurements.
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Fig. 6. The measurements for one building entrance stream account-
ing for approximately 50% of the total entrance counts were replaced
by missing data labels.

Fig. 5(b) shows days with the opposite situation where more
people are measured leaving the building than entering. The base-
line model ignores all the extra exit counts at the end of the day,
giving occupancy predictions that are likely too low. The probabilis-
tic model, however, uses this information to adjust the occupancy at
previous times upward, resulting in a more believable prediction.

Although we do not have a ground truth for comparison, these
examples indicate that the probabilistic model provides more reason-
able outputs than the baseline for typical amounts of sensor noise.
In the next section, we investigate robustness to sensor failure in the
form of missing or erroneous observations.

Validation. Since we do not have the true occupancy values, we
address the issue of validating the model by removing some infor-
mation and seeing how well the model recovers. We remove infor-
mation in two ways: replacing observed measurements with missing
labels, such as happens when a sensor stops communicating; and
replacing observed measurements with corrupted data, as happens
when a sensor malfunctions but continues to send false information.

In the first experiment, shown in Fig. 6, one day of measure-
ments for the entrance stream of the main door to the building was
replaced by missing labels. This particular door sees approximately
50% of the traffic to the building. The baseline method has no way to
deal with missing data and degrades quickly. The occupancy model
is able to recover much of the missing information, using the model
of typical behavior (Poisson rate) and the information from the other
streams such as extra exit counts.

Missing data is easier than corrupted data, since the model is
alerted of the need to fill missing data with something reasonable.
For corrupted data, we replace the measurements of one of the en-
trance streams with zeros, at a door used by roughly 25% of the
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Fig. 7. Two days where the measurements from one entrance stream
accounting for approximately 25% of the total entrance counts were
replaced by zeros.

building occupants. Two things help the multi-sensor model recover
the missing information. First, the corrupted data appears unusual at
the individual stream level, as the model expects data similar to the
rate parameter. Second, if the corrupted data is only in one direction,
the “excess” counts from the other direction will try to balance it out.

The results for corrupted data are shown in Fig. 7. As with the
missing data experiment, the baseline method fails completely. The
occupancy model performs much better, although it does not recover
all of the missing information—the noise model resists deviation
from the observed values, but the shared information is able to offset
at least some effects of the corrupted data. This property of the occu-
pancy model could also be used to detect a faulty sensor and provide
an early alert prediction of a malfunction. A model with an explicit
notion of sensor faults could improve performance still further.

6. CONCLUSIONS

Even with complete sensor coverage of all doors to a building, oc-
cupancy prediction is non-trivial. The probabilistic model presented
in this paper overcomes many of the limitations of simpler methods.
Spatial information and correlations among sensors will be exam-
ined in future work. In the long-term, we hope to combine people
count sensors with other human activity sensing data such as elec-
tricity use, building schedules, and internet traffic to predict occu-
pancy densities and future occupancy movements for larger areas
such as a campus or city.
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