
	

	 1	

DISTRIBUTED	SYSTEMS	PRIMER	
I.	Challenges,	Goals,	and	Approaches	

	
Distribution	is	hard	for	many	reasons	(facts	of	life).		Distributed	systems	(DS)	aim	to	provide	the	
core	mechanisms	and	protocols	that	address	the	challenges	and	hide	them	under	convenient,	
easier	to	use	abstractions	that	others	can	use.		Unfortunately,	not	all	challenges	can	be	hidden	
under	clever	abstractions,	and	they	creep	up	whenever	one	pushes	a	distributed	system	to	its	
limits.		So	anyone	wishing	to	develop	or	even	use	distributed	systems	must	understand	these	
fundamental	challenges	and	general	approaches	to	address	them	when	they	creep	up.	
	
Below	are	a	few	facts	of	life	that	make	distribution	hard,	the	corresponding	goals	of	distributed	
system	design,	and	the	main	approaches	that	distributed	systems	take	to	address	them.	
	
FACT	OF	LIFE	1:	Data	is	big.		Users	are	many.		Requests	are	even	more.	
No	single	machine	can	store	or	process	all	data	efficiently.	Supercomputers	can	do	a	lot,	but	they	
haven't	been	the	final	answer	to	scaling	for	a	long	time.		The	primary	goal	of	distributed	systems	is	
to	enable	distribution,	i.e.,	to	make	multiple	independent	machines	interconnected	through	a	
network	coordinate	in	a	coherent	way	to	achieve	a	common	goal	(e.g.,	efficiently	process	a	lot	of	data,	
store	it,	or	serve	it	to	a	lot	of	users).		The	preceding	sentence	is,	btw,	an	accepted	definition	of	a	
distributed	system.	
	
However,	effective	processing	at	scale	is	hard.	An	arbitrarily	application	may	simply	not	scale:	
		-	coordination	is	expensive	(networks	are	expensive).	
		-	the	application	may	not	exhibit	sufficient	parallelism.	
		-	bottlenecks	may	inhibit	parallelism.		Sometimes	bottlenecks	hide	in	the	very	low	levels	if	those	
are	not	used	correctly	(e.g.,	a	network	hub,	a	logging	server,	a	database,	a	coordinator,	etc.).	
	
Goal	1:	Scalability.		Effective	coordination	at	scale.			The	more	resource	you	add,	the	more	data	
you	should	be	able	to	store/process,	and	the	more	users	you	can	serve.		This	implies	programming	
models	and	abstractions	that	are	known	to	scale.		Examples	that	you’ll	learn	about:	the	
map/reduce	model,	RDDs,	etc.		These	are	all	examples	of	programming	models	that	make	an	
application	scalable.		But,	never	hope	for	perfect	scalability:	add	one	machine,	increase	your	
capacity	proportionally	forever.		Most	often,	the	scalability	curve	tapers	off	as	various	components	
of	the	system	start	to	reach	their	capacity.			Sometimes	these	can	be	very	hidden	components	(e.g.,	
a	monitoring	system,	a	network	router).	
	
Approach	1:	Sharding.		The	primary	mechanism	for	scalability	is	called	sharding:	launch	multiple	
processes	(a.k.a.,	workers),	split	up	your	load	into	pieces	(a.k.a.,	shards),	and	assign	different	
shards	to	different	workers.		For	example,	you	can	split	your	dataset	into	pieces,	split	your	user	
base	into	subsets	of	users,	or	distribute	your	incoming	requests	to	different	workers.		The	workers	
should	be	designed	to	coordinate	to	achieve	a	common,	coherent	service	despite	the	sharding	(e.g.,	
compute	a	global	statistic	over	the	dataset,	perform	each	user’s	actions	in	a	consistent	way	with	
respect	to	the	other	users,	etc.).		We’ll	see	that	sharding	raises	substantial	semantic	challenges	
(called	consistency	challenges),	especially	in	the	context	of	failures,	as	next	described.		
FACT	OF	LIFE	2:	At	scale,	failures	are	inevitable.		



	

	 2	

Many	types	of	failures	exist	at	all	levels	of	a	system:	
		-	network	failures	
		-	machine	failures	(software,	hardware,	flipped	bits	in	memory,	overheating,	etc.)	
		-	datacenter	failures	
		-	software	failures	
		…	other…	
	
They	are	of	many	types:	some	are	small	and	isolated	others	are	major	failures,	some	are	persistent	
others	are	temporary,	some	resolve	themselves	others	require	human	intervention,	some	result	in	
crashes	others	result	in	small,	detectable	corruptions.		What	they	all	have	in	common:	most	
failures	are	very	unpredictable!		They	can	occur	at	any	time,	and	at	scale	they	are	guaranteed	ALL	
THE	TIME!	And	they	greatly	challenge	coordination	between	the	machines	of	a	distributed	
systems	(e.g.,	a	machine	tells	another	machine	to	do	something	but	it	doesn't	know	if	it's	done	it,	
how	can	it	proceed?)!		Or,	imagine	that	two	machines	need	to	coordinate	(e.g.,	to	compute	a	global	
statistic	over	a	sharded	dataset)	but	they	cannot	talk	to	each	other.		What	are	they	supposed	to	
do?		Can	they	go	on	with	their	processing	and	make	progress	only	among	those	processes	that	are	
up	and	running?		When	is	it	OK	to	do	that?		For	example,	if	the	statistic	we’re	computing	over	a	
sharded	dataset	is	a	rough	average,	then	it	may	be	OK	to	report	the	average	over	n-1	workers	if	
one	of	the	workers	is	down.		However,	if	the	statistic	needs	to	be	exact	and	is	sensitive	to	the	data	
(e.g.,	we	need	an	exact	maximum/minimum),	then	n-1	live	workers	cannot	continue	until	the	n-th	
comes	back	with	its	own	value.	
	
Goal	2:	Fault	tolerance.		The	goal	is	to	hide	as	much	as	of	the	failures	as	possible	and	provide	a	
service	that	e.g.,	finishes	the	computation	fast	despite	failures,	stores	some	data	reliably	despite	
failures,	provides	its	users	with	continued	and	meaningful	service	despite	failures.	Coordination	
needs	to	take	failures	into	account	and	recover	from	them.	
	
The	fault	tolerance	goal	subsumes	multiple	subgoals,	including:	

- Availability:	the	service/data	continues	to	be	operational	despite	failures.	
- Durability:	some	data	or	updates	that	have	been	acknowledged	by	the	system	will	persist	

despite	failures	and	will	eventually	become	available.	
- Durability	differs	from	availability:	durability	can	be	thought	of	as	“eventual”	availability	of	

some	data	or	state.		
	

Approach	2:	Replication.	The	primary	mechanism	used	for	fault	tolerance	is	replication:	have	
multiple	replicas	execute/store	the	same	shard;	if	one	replica	dies,	another	replica	can	provide	the	
data/computation.			For	example,	if	you’re	computing	a	maximum	over	a	sharded	dataset	across	
multiple	workers,	have	the	maximum	over	each	shard	be	computed	by	two	or	three	replicas	in	
parallel;	if	one	replica	dies,	another	one	can	report	the	maximum	to	the	other	n-1	worker	sets.	
	
FACT	3:	Consistency	in	sharded	and	replicated	systems	is	HARD.	
Both	sharding	and	replication	raise	substantial	consistency/semantics	challenges	in	the	context	of	
failures.		Consider	the	case	of	computing	an	exact	average	over	a	sharded	and	replicated	dataset:	
how	do	we	make	sure	that	we	incorporate	the	average	over	each	shard	only	once	if	the	average	
over	each	shard	is	computed	and	reported	by	three	replicas?		Assigning	each	shard	a	unique	ID	



	

	 3	

may	help	address	this	particular	problem,	but	the	challenge	can	become	a	lot	harder	if	the	faulty	
replica	does	not	die,	but	instead	spews	up	a	faulty	average	value	due	to,	e.g.,	a	memory	error.		
	
Goal	3:	Meaningful	consistency	semantics.		Dealing	with	these	issues	is	hard	for	both	the	
programmers	who	build	distributed	applications	and	the	users	who	use	these	applications.		So	the	
key	thing	is	to	build	infrastructure	systems	(such	as	storage	systems,	computation	frameworks,	
etc.)	that	provide	clear	semantics	that	hold	in	the	face	of	failures,	and	to	express	those	semantics	
clearly	in	the	APIs	of	these	systems.		E.g.,	if	you	decide	that	in	case	of	failure	your	distributed	
computation	system	will	return	the	results	of	a	partial	computation,	then	you	need	to	
communicate	that	through	your	API	so	the	programmer/user	of	the	results	is	aware	of	the	
situation.		You	may	also	want	to	provide	error	bounds	for	the	results	you	are	reporting.	
	
Approach	3:		Rigorous	protocols,	such	as	agreement	protocols.		The	general	approach	is	to	
develop	rigorous	protocols,	which	we	will	generically	call	here	agreement	protocols,	that	allow	
workers	and	replicas	to	coordinate	in	a	consistent	way	despite	failures.		Agreement	protocols	
often	rely	on	the	notion	of	majorities:	as	long	as	a	majority	agrees	on	a	value,	the	idea	is	that	it	can	
be	safe	to	continue	making	that	action.		Different	protocols	exist	for	different	consistency	
challenges,	and	often	the	protocols	can	be	composed	to	address	bigger,	more	realistic	challenges.			
	
In	this	module,	we	will	look	at	two	types	of	protocols	that	address	consistency	challenges	in	
distributed	databases:	(1)	commitment	protocols,	for	implementing	transactional	semantics	in	a	
sharded	database;	and	(2)	consensus	protocols,	for	implementing	consistent	updates	in	a	
replicated	database.			After	we	look	at	these	separately,	we	will	look	at	how	one	particular	
distributed	database,	Google’s	Spanner,	combines	the	two	mechanisms	to	build	a	strongly	
consistent	database	of	global	scale.		At	the	module’s	end,	you	should	be	able	to	understand	some	
pretty	complex	design	of	distributed	systems!	
	

II.	Example:	Web	Service	Architecture	
	
Before	looking	at	real	designs,	let’s	understand	the	challenges	a	bit	more	with	a	simple	example:	
we’ll	build	up	a	web	service	architecture!		We’ll	start	with	a	basic	architecture	that’s	not	scalable	
or	fault	tolerant	(or	particularly	efficient)	and	we’ll	add	DS	components	to	make	it	more	so.		
Unfortunately,	every	time	we	add	a	new	component	to	solve	a	problem,	we’ll	see	that	we’ll	open	
up	a	bunch	more	problems...	
	
1.	Basic	Architecture	
	

Architecture:	
-	web	front	end	(FE):	creates	and	serves	pages	in	response	to	users’	requests;	
accesses	the	database	to	get	the	data	necessary	to	populate	the	response	pages.	
-	database	server	(DB)	with	disk	attached:	stores	all	the	data	(user	data,	even	
session	data).	
-	network	that	connects	web	server	with	database	server.		
	
Advantages:		FE	is	stateless	and	can	restart	on	failures,	all	data	is	in	DB,	which	
gives	good	durability	and	consistency	properties.	



	

	 4	

	
Problems:	
							1)	Latency:		network,	DB	(disk,	transactions,	contention)	
							2)	Throughput:	limited	by	DB	most	likely	
							3)	Fault	tolerant:		not	very.		DB	is	not	replicated	=>	single	point	of	failure	for	both	availability		
												and	durability.	
							4)	Scalable:	not	very.	1	FE,	1	DB.	
	
Let’s	deal	with	problem	1).	
	
2.	Goal:	Reduce	Latency	

Architecture:	Web	FE’s	reads/writes	go	through	in-memory	cache	($$).		
The	$$	saves	the	latest	values	of	written	data	and	responds	with	them	
when	the	FE	asks	for	something	in	the	cache.	
	
Properties:	
-	Read	performance:	improved	if	working	set	fits	in	memory.		If	not,			
		read	performance	doesn’t	improve	(may	even	degrade).	
-	Durability:	depends	on	cache:	write-through	vs.	write-back:	
			-	Write-through	cache	=	writes	go	through	the	cache,	where	they									
						are	saved	for	future	reads,	but	then	they	go	all	the	way	to	the	DB.				
						The	cache	waits	for	the	DB	to	ack	the	write	before	it	returns	to	FE.	
				-	Write-back	cache	=	writes	go	through	the	cache,	where	they	are	

buffered.		The	cache	sends	them	asynchronously	to	the	database	
from	time	to	time.	

																																																												-	Durability	is	good	with	write-through	$$,	poor	with	write-back	$$.	
-	Write	performance	is	opposite:	good	with	write-back	cache,	poor	with	write-through	cache.	
-	Are	there	any	consistency	issues?	No.		Only	one	server	accesses	DB,	and	it	goes	through	one	$$.	
Problems	3),	4)	from	above	still	exist.		Let’s	deal	with	part	of	4)	next.	
	
3.	Goal:	Scale	Out	the	FE	(and	get	some	fault	tolerance	for	it)	

	
Architecture:	Launch	multiple	replicas	of	the	front	end.		Each	has	
its	own	local	cache,	which	we’ll	assume	is	write-through.	
	
Benefit:	If	an	FE	dies,	another	one	can	take	over.		If	the	caches	
are	write-through,	there	are	no	recovery	issues.		So	this	
architecture	gives	scalability	and	fault	tolerance	for	the	FE	part.	
		
Problems:	
-	Consistency	now	becomes	a	problem.		Entries	in	the	caches	can	
become	stale.		To	address	this,	we	need	to	keep	the	caches	in	
sync,	or	invalidate	them	whenever	a	write	occurs	on	a	cached	
entry.		Writes	(or	invalidation	messages)	thus	need	to	propagate	
to	the	DB	plus	all	the	caches.	
-	So,	write	performance	can	be	affected.		



	

	 5	

-	We	also	need	some	concurrency	control	on	the	DB	now	because	multiple	FEs	can	update	the	DB		
at	the	same	time.		E.g.,	the	DB	server	needs	to	lock	entries	while	updating	them.	
	
4.	Goal:	Fault	Tolerance	for	DB	

Architecture:	Launch	identical	replicas	of	the	DB	server,	each	
with	its	disk.	All	replicas	hold	all	data,	writes	go	to	all.	
	
Problems:	
-	Writes	now	need	to	propagate	to	all	replicas.		So	they	are	much	
slower!		Even	if	done	in	parallel,	because	FE	now	needs	to	wait	
for	the	slowest	of	DB	replicas	to	commit	(assuming	write-
through	cache,	which	offers	the	best	durability).	
-	Moreover	all	replicas	need	to	see	all	writes	IN	THE	SAME	
ORDER!		If	order	is	exchanged,	they	can	quickly	go	“out	of	sync”!		
So	lots	more	consistency	issues.	
-	There	are	also	availability	issues.		If	you	require	all	the	replicas	
to	be	available	when	a	write	is	satisfied	(for	durability),	
availability	goes	DOWN!		Consensus	protocols,	which	work	on	a	

majority	of	replicas,	address	this.	
-	Another	consistency	challenge:	how	are	reads	handled?		If	you	read	from	one	replica,	which	one	
should	you	read	given	that	updates	to	the	item	you’re	interested	in	might	be	in	flight	as	you	
attempt	to	read	it?	We’ll	see	how	to	address	these	issues	in	future	lectures	by	structuring	the	
replica	set	in	particular	ways.			
	
5.	Goal:	Scalability	for	DB	

Architecture:	Partition	the	database	into	multiple	shards,	
replicate	each	multiple	times	for	fault	tolerance.		Requests	for	
different	shards	go	to	different	replica	groups.	
	
Problems:	
-	How	should	data	be	shared?	Based	on	users,	based	on	some	
property	of	the	data?	
-	How	should	different	partitions	get	assigned	to	replica	
groups?		How	do	clients	know	which	servers	serve/store	which	
shards?	
-	If	the	FE	wants	to	write/read	multiple	entries	in	the	DB,	how	
can	it	do	that	atomically	if	they	span	multiple	shards?		If	
different	replica	groups	need	to	coordinate	to	implement	
atomic	updates	across	shards,	won’t	that	hinder	scalability?	
	

	
III.	CONCLUSION	

Scalability,	fault	tolerance,	and	consistency	are	difficult	goals	to	achieve.		Solving	them	requires	
rigorous	protocols	and	architectures.		We’ll	learn	about	basic	protocols	and	architectures	through	
the	course	of	this	module.	


