
	

	 1	

COMMITMENT PROTOCOLS ON SHARDED DATABASES 
 
We talked about sharding as a key mechanism for scaling distributed systems. We also talked about 
replication as a key mechanism for fault tolerance in distributed systems.  Both challenge coordination 
and raise semantic challenges.  To handle the challenges, the DS community has come up with rigorous 
protocols for coordination.  The protocols differ depending on the type of distributed system you are 
developing – e.g., you’ll have different protocols for dealing with coordination in distributed databases 
vs. distributed computation engines.  In this module we will focus on the specific case of distributed 
databases.  Over the next three lectures we’ll look at protocols for dealing with semantic challenges 
raised by sharding and replication in distributed systems.  The next two lectures look at either sharding 
or replication separately; the third lecture shows how to combine the techniques to address the joint 
challenges occurring in real distributed databases, which are both sharded and replicated. 
 
So: for this lecture, I want you to forget about replication and fault tolerance, and focus instead on 
sharding and scalability. 
 

I. EXAMPLE SEMANTIC CHALLENGES WITH SHARDING 
 
Going back to the Web service example we presented in the previous lecture, let’s revisit the last 
architecture we discussed, but ignore the replication aspect of it.  For concreteness, let’s specify what the 
application (implemented by the FE) is in this case: say it is a banking application, where user account 
information is stored in the DB and users can perform money transfer transactions to move data from 
one account to another as long as they have sufficient funds in the source account. 
 

Architecture:  FE and DB are both sharded.  FEs accept requests 
from end-users’ browsers and process them concurrently (i.e., two 
requests from the same or from different users can execute in 
parallel on two different FEs).   The data stored in the DB is 
sharded, say by user ID.  All data of the first third of the users in ID 
space is stored in Shard 1; all data of the next third of the users in 
ID space is stored on Shard 2; and all data of the last third of the 
users in ID space is stored on Shard n. 
 
First question:  How does this architecture increase the capacity of 
your system (i.e., the maximum load the system can handle)? 
Answer: As long as most of the workload involves accessing 
accounts from one of the shards (e.g., users check out mostly their 
accounts), the overall capacity should increase, because you now 
have the various DB shards handling data requests in parallel from 
multiple different FEs. 

 
Second question:  What semantics challenges does this architecture raise? 
Answer: Many, here’s an example. Suppose a user wants to transfer some money from his account to 
another user’s account. This bank “transaction” involves two operations on two different parts of the 
database – deducting the money from the source account and adding it to the destination account.  
Sometimes, these two accounts will be stored on different machines.  From a semantic perspective, it’s 
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important that both operations either succeed or fail, otherwise you can either “lose” money (if the 
operation completes on the source but not on the destination) or “create” money out of thin air (if the 
operation fails on the source but completes on the destination).  Unfortunately, the two machines are 
independent and hence they can fail independently, so what we would like is a coordination protocol 
between the two DB shard servers that lets us ensure that the two operations can either both succeed, or 
if one fails, the other one is not applied, either. 
 
That is what agreement protocols give you, and the best known agreement protocol is Two-Phase 
Commit (2PC).   We’ll talk about it in this lecture, but first have to introduce some more basic notions, 
namely the concept of transactions, which is the abstraction that databases offer to support these kinds of 
multi-operation needs.   We’ll then look at how transactions are implemented in a single-node, non-
sharded case, and then at the end of the lecture we’ll look at 2PC, which makes transactions work in the 
distributed/sharded case. 
 

II. TRANSACTIONS – THE CONCEPT 
 
A Turing-award-winning idea; a transaction is an abstraction provided to programmers that 
encapsulates a unit of work against a database. Transactions provide a simple but powerful interface: 

- txID = begin()  // starts a transaction; returns a unique ID for the transaction 
- outcome = commit(txID)  // tries to commit a transaction; returns whether or not the commit  
                           // was successful. If successful, all operations included in the transaction have  
                           // been applied to the DB.  If unsuccessful, none of the operations have been  
                           // applied. 
- abort(txID)     // cancels all operations of a transaction and erases their effects on the DB. Can  
                          // be called by the programmer or by the database engine itself. 

 
By wrapping a set of accesses and updates in a transaction, the database guarantees: 

- Atomicity: Either all operations in the transaction will complete successfully (commit outcome), 
or none of them will (abort outcome). 

o Said differently, after a transaction commits or aborts, the database will not reflect a 
partial result of that transaction. 

o All transactions will either commit or abort. 
o Q: if one were to guarantee failure-freeness, does atomicity come “for free”? 

§ A: yes, though it is a wide definition of “failure” for this to be true, e.g., no 
rollback of conflicting or deadlocking transactions. 

- Isolation: A transaction’s behavior is not impacted by the presence of other, concurrently 
executing transactions. 

o Said differently, a transaction will “see” only the state of the DB that would occur if the 
transaction were the only one running against the database, and it will produce results 
that it could produce if it were running alone. 

o Q: if one executes only a single transaction at a time, does “isolation” come for free? 
§ A: yes! this is tied to the very definition of isolation. 

- Durability: The effects of committed transactions survive failures. 
o If there is non-volatile storage in the system: the effects of a committed transaction must 

be reflected in non-volatile storage at all times. 
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o After a failure, the effects of committed transactions must be recoverable or already 
reflected in the DB. 

 
These properties are often called ACID (yes, there’s a C that stands for Consistency, but we don’t 
discuss it in this course). 
 
To illustrate transactions, let’s go back to the banking example, but let’s focus on the single-node/non-
sharded case.  And let’s assume that there is concurrency: the DB is multi-threaded and it’s processing 
transactions from multiple clients in parallel.  There are challenges with how one implements 
transactions even in this case.  ((Note that although we are using the banking example, the notion of 
transactions is much more vastly applicable, even to applications that don’t seem to truly “need” strong 
transactional semantics.  The reason is that it’s a lot simpler to program against a strong-semantic 
database system than it is to program against a weaker-semantic one.))  Here’s a piece of code for two 
programs running on top of a database that offers transactions as a programming abstraction. 

 
 
 
 
 
 
 
 
 
 
 
 

Without transactions: What could go wrong?  Think of crashes or inopportune interleavings between 
concurrent TRANSFER and REPORT_SUM processes . 
 
TRANSFER: 

- Assume statements operates on DB immediately, and DB is a single data structure 
o what happens if there is a crash after 04 but before 07? 
o money is lost 

- Why? Because the transfer is not atomic 
o need some way of making sure entire transfer happens, or none. 
o That’s what the atomicity property of ACID transactions gives. 

 
REPORT_SUM: 

- Fine if ReportSum() executes before or after TRANSFER() 
- what happens if interleaved with TRANSFER()? 

o Depends on the interleaving, some are OK, others not.  The following is not OK. 
o Suppose REPORT_SUM’s steps are all interleaved between TRANSFER’s steps 04 and 

05.  It will seem like some money was lost.  Why is that not OK (for the example)?  
Suppose A and B are joint accounts, and one owner is transferring money and at the same 
time another owner checks for the total balance, then the latter will become very 
confused and will think they’ve lost some money. 

TRANSFER(src,	dst,	x)	
01					src_bal	=	Read(src)	
02					if	(src_bal	>	x):	
03									src_bal	-=	x	
04									Write(src_bal,	src)	
05									dst_bal	=	Read(dst)	
06									dst_bal	+=	x	
07									Write(dst_bal,	dst)	
	
Invocation:	TRANSFER(A,	B,	50)	

REPORT_SUM(acc1,	acc2)	
01					acc1_bal	=	Read(acc1)	
02					acc2_bal	=	Read(acc2)	
03					Print(acc1_bal	+	acc2_bal)	
	
	
	
	
	
Invocation:	PRINT_SUM(A,	B)	
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o Why is that not OK more generally, beyond this trivialized example? 
§ Because REPORT_SUM and TRANSFER both depend on the same data 
§ And TRANSFER is modifying that data 
§ And REPORT_SUM sees both data that predates TRANSFER() (B) and post-

dates TRANSFER() (A) 
§ That violates this illusion of sequential execution! We lack isolation. 
§ And the big problem may not be that users get confused, but even worse, 

applications may get confused, and if they aren’t coded to take into account all of 
these corner-case situations that may happen, they may fail.  And it’s really, really 
hard to think about all corner cases.  That’s why we want strong semantics, so we 
(as programmers) don’t have to worry about corner cases. 

- That’s what the isolation property of ACID transactions give. 
 
With transactions: To fix these challenges, you just modify the TRANSFER and REPORT_SUM to 
wrap their operations into a transaction, i.e., add begin() and commit() at the beginning and end, 
respectively, of each method. 
 
So, the idea is that if you build your applications on top of ACID transactions, you won’t have to worry 
about the challenges we described.  By and large, there are things to pay for using these strong semantic: 
transactions are expensive, so sometimes you may have to forego their strongest semantics and make do 
with something weaker.  So it’s good to understand a bit how these strong semantics are implemented so 
you can reason about their costs in your application, and potentially how you can weaken them in a way 
that is still meaningful to your application but more efficient.  So, in the next section, we’ll look at how 
single-node, non-sharded databases implement ACID transactions.  Section IV talks about how to 
implement transactions in the sharded-database case. 
 

III. IMPLEMENTING TRANSACTIONS IN A SINGLE-NODE, NON-SHARDED DB 
 
Based on the preceding examples, we need to address two challenges to implement ACID transactions 
even in a non-distributed database. 
 
Atomicity and durability challenges: How do we make sure that the operations included in a 
transaction either all succeed or none of them succeed despite temporary failures of the machine running 
the DB?  (Remember no distribution in this section.)  The key mechanism here is write-ahead logging.  
Assume that disks are reliable and cannot fail, but that machines can fail temporarily.  Upon recovery, 
they can access the data on disk but RAM data is vanished.  The idea in write-ahead logging is to log to 
disk sufficient information about each operation before you apply it to the database, such that in the 
event of a failure in the middle of a transaction, you can undo the effects of its operations on the 
database.  If you’ve managed to apply all the operations in a transaction without a failure, then you enter 
in your log that the particular transaction is completed.  Upon a subsequent failure of the DB server, the 
server will read the logs and apply all transactions that are committed and undo any transactions that 
were still ongoing at the time of failure.  These slides <https://columbia.github.io/ds1-class/lectures/09-
local-transactions-wal.pdf>, courtesy of Dave Andersen, describe this mechanism with an example. 
 
With write-ahead logging, you get the following semantic: (1) the operations in a transaction are 
completed as a unit, i.e., either all (commit outcome) or none (abort outcome) and (2) for any committed 

https://columbia.github.io/ds1-class/lectures/09-local-transactions-wal.pdf
https://columbia.github.io/ds1-class/lectures/09-local-transactions-wal.pdf
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transaction, its effects will persist despite database failures, and become available after recovery.   The 
two parts of the semantic correspond to atomicity and durability properties of ACID. 
 
Isolation challenge:  How do we make sure that the operations included in a transaction all witness the 
database in a coherent state, independent of other ongoing (a.k.a., concurrent) transactions?   The key 
mechanism here is locking. In one instantiation of this mechanism, the DB acquires locks on all rows 
read or written and maintains them until the end of the transaction.  Read but not written rows can be 
locked in a shared way, allowing other transactions to read (but not write) them.  Rows that are written 
are locked exclusively (no other readers/writers allowed).   There are some challenges that one needs to 
worry about with locks, including deadlocks; if you are interested, you can refer to these slides 
<https://columbia.github.io/ds1-class/lectures/09-local-transactions-2pl.pdf>	
 (also courtesy of Dave Andersen), but they are not required for exam (unlike the WAL slides and other 
slides linked from the class notes).	
 
Databases use two-phase locking to achieve various levels of isolation between concurrent transactions: 
If the DB grabs locks for both read and written rows, and retain them till the end of the transaction, then 
you can get very strong isolation semantics (called serializability), but that can be very expensive.   This 
is because other transactions that are trying to access some of the rows you’ve locked will be blocked 
waiting for your transaction to finish.  Instead, if the DB grabs only locks for written rows, and holds 
each only while it performs each write operation, then you get weaker isolation semantics (called read 
uncommitted), but that mechanism allows for greater concurrency and hence it’s more efficient.  In 
between these two semantics, there are other semantics of intermediary strength and overhead. 
 
In your applications, you will have to choose the strength of the semantic, so it’s good to familiarize 
yourselves with each semantic before you make a choice.  In general, the idea is that stronger semantic 
means you’ll find it easier and more intuitive to build your application, but you’ll sacrifice performance.  
Weak semantic means that you’ll have to code your application around weird corner cases that the 
semantic allows, so it’s harder to code but it can be made faster. 
 

IV. IMPLEMENTING TRANSACTIONS IN A SHARDED DB 
 
Now	that	we	understand	what	transactions	are,	and	how	they	are	implemented	in	the	single-node	
DB	case,	let’s	see	how	they	are	implemented	in	the	sharded	case.			What	the	single-node	case	gives	
us	is	a	way	to	implement	the	various	operations	included	in	a	transaction,	in	an	atomic	and	
isolated	way,	against	one	of	the	nodes.		In	the	sharded	case,	a	transaction	will	consist	of	several	
operations,	subgroups	of	which	will	be	executed	against	different	servers.				We	would	like	to	
preserve	the	same	atomicity,	durability,	and	isolation	semantics	as	we	did	in	the	single-node	case,	
but	in	a	sharded	case	now.		What	we’ll	do	is	to	execute	each	portion	of	the	transaction	that	is	
relevant	for	each	shard	using	the	techniques	from	Section	III,	and	then	we’ll	devise	a	protocol	for	
the	various	shards	involved	in	a	transaction	to	decide	whether	they	should	all	commit	their	
portions	of	the	transaction	or	not.		
	
The	protocol	is	called	two-phase	commit,	and	we’ll	first	describe	it	in	the	context	of	the	example	
in	Section	II.		After	that	we’ll	generalize.	
	
	

https://columbia.github.io/ds1-class/lectures/09-local-transactions-2pl.pdf
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Simplified	2PC	based	on	Section	II	Example	
	
Suppose	you	have	a	simple	transaction,	which	consists	of	two	operations	only:	deduct	money	from	
the	source	account	account	(op1)	and	add	it	to	a	destination	account	(op2).		And	suppose	the	
source	and	destination	accounts	are	stored	on	different	servers	(due	to	DB	sharding),	S1	and	S2,	
respectively.				The	operation	relevant	to	S1	will	be	op1;	the	operation	relevant	to	S2	will	be	op2.		
We	would	like	either	both	or	neither	of	these	operations	to	be	executed	on	the	two	servers.		We’ll	
do	several	things:	

1. To	begin	a	distributed	transaction,	the	client	(in	this	case	one	of	the	FEs,	on	behalf	of	the	
end	user)	initiates	transactions	on	each	separate	shard	server.	

2. As	part	of	the	distributed	transaction,	the	client	will	send	the	operation	to	the	
corresponding	shard	server.			Op1	goes	to	S1	and	op2	goes	to	S2.		Each	shard	will	perform	
these	operations	as	we	described	in	the	previous	section:	S1	will	lock	the	row	for	the	
source	account,	will	log	sufficient	information	about	op1	to	its	write-ahead	log	to	be	able	to	
undo	op1	if	necessary,	and	finally	will	perform	the	operation	on	the	database;	S2	will	do	
similarly	for	op2.			The	two	servers	maintain	their	respective	locks	until	the	end	of	commit	
(Step	4.	from	below).	

3. When	it’s	time	to	commit	the	transaction,	we	will	proceed	as	follows:	
3.1. The	client	(or	rather,	the	DB	library	on	behalf	of	the	client	code)	sends	a	PREPARE	

message	to	each	shard	server,	specifying	the	transaction	ID.	
3.2. Upon	receipt	of	a	PREPARE	message	for	a	transaction	txID,	a	shard	server,	Si,	will:	

(1)	determine	whether	it	can	commit	the	transaction,	(2)	commit	its	conclusion	to	
its	write-ahead	log	(this	will	be	a	PREPARE-OK	or	PREPARE-FAIL	entry	in	the	log);	
and	(3)	reply	with	PREPARE-OK	or	PREPARE-FAIL,	respectively,	to	the	client.		For	
example,	if	the	server	has	failed	some	time	before	receiving	PREPARE	from	the	
client,	or	if	it	had	to	abort	the	transaction	to	resolve	some	deadlock,	or	for	some	
other	reason,	like	finding	that	one	of	the	accounts	has	been	disabled	in	the	
meantime,	then	the	server	will	send	a	PREPARE-FAIL	response	back	to	the	client	
and	will	proceed	to	undo	the	transaction	based	on	its	write-ahead	log	and	release	all	
of	its	locks.		If,	however,	the	server	found	nothing	wrong	with	the	transaction	at	the	
time	it	received	PREPARE	from	the	client,	then	it	will	send	a	PREPARE-OK	in	this	
step	to	the	client.		In	that	case,	the	node	must	wait	for	a	next	message	from	the	client	
before	it	releases	its	locks	and	marks	the	transaction	as	committed	in	the	write-
ahead	log.		If	a	node	finds	a	PREPARE-OK	entry	in	its	log	for	a	transaction,	it	cannot	
unilaterally	decide	to	abort.	

3.3. On	the	client,	upon	receiving	PREPARE-OK/PREPARE-FAIL	responses	from	the	
shard	servers:	

3.3.1. If	the	client	receives	PREPARE-OKs	from	both	servers,	then	the	client	sends	a	
COMMIT	message	to	both	servers	S1	and	S2.		It	then	waits	again	for	the	
acknowledgement.	

3.3.2. If	the	client	receives	one	PREPARE-FAIL	response,	then	the	client	will	send	an	
ABORT	message	to	both	servers	S1	and	S2.	

3.4. Upon	receipt	of	a	COMMIT	or	ABORT	message	from	the	client,	a	shard	server,	Si,	
will:	(1)	enter	commit/abort	in	its	write-ahead	log,	(2)	if	it’s	ABORT	then	it	goes	on	
and	reverts	the	effects	of	the	transaction	on	the	database,	and	(3)	release	the	locks	it	
was	holding	for	the	transaction.	
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More	General	Version	of	the	Protocol	
The	protocol	we	presented	above	is	driven	by	our	example	and	is	a	simplification	of	the	actual	2PC	
protocol.		More	generally,	two	2PC	protocol	is	performed	across	two	or	more	nodes	(called	
participants),	and	in	the	picture	below,	which	illustrates	the	more	general	version,	it	is	performed	
across	four	participants.			Also,	in	more	general	settings,	it	is	a	really	bad	idea	to	have	the	client	–	
an	external	entity	w.r.t.	the	DB	service	–	coordinate	the	transaction.		Instead,	it	helps	if	one	has	a		
designated	server,	called	a	
transaction	coordinator,	
send	the	PREPARE	(aka,	
proposal)	and	COMMIT	
(aka,	decision)	messages.		
The	coordinator	can	then	
record	the	various	phases	
at	the	protocol	into	its	own	
log	to	help	with	recovery	
from	various	conditions	
(we’ll	discuss	recovery	
next).		So,	in	the	picture	
below,	we	show	the	two	
phases	of	the	2PC	protocol,	
each	corresponding	to	a	
message	exchange	(prepare	and	commit),	and	a	transaction	coordinator	(denoted	TC).	
	
Handling	Timeouts/Failures	
The	preceding	protocol	description	deals	with	“happy	cases,”	but	doesn’t	specify	what	happens	on	
various	failures.		Let’s	study	those	situations	next.		
	
Timeouts:	

• waits	are	before	steps	2,	3,	and	4.	
• 2:	before	participant	has	voted,	so	safe	to	abort	on	timeout	
• 3:	client	is	waiting	for	OK	or	FAIL	from	participants;	so,	safe	to	abort	on	timeout	
• 4:	the	only	uncertainty	period.	After	timeout,	need	a	termination	protocol:	

a) “wait	until	communication	with	coordinator	is	re-established.”	Safe	but	
downside	is	p	may	be	blocked	unnecessarily,	since	if	it	can	learn	the	decision	
from	any	other	participant	that	has	decided.	

b) “cooperative”	--	participants	know	about	each	other,	and	p	pings	q	for	outcome.	
(if	q	is	not	in	uncertainty	period	and	has	not	decided,	q	can	abort	as	the	
outcome!)	

Recovery:	
• if	participant	is	not	in	uncertainty	period,	on	recovery,	can	decide	what	to	do.	(unilaterally	

abort	if	no	decision,	otherwise	do	what	decision	is.)	
• if	participant	is	in	uncertainty	period,	it	cannot	decide	on	its	own,	must	run	termination	

protocol	(as	above).		
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V.	CONCLUSION	
Sharding creates an atomicity challenge.  To address it, we introduced a common and useful abstraction 
in (distributed) databases: transactions, which represent atomic units of work.  We’ve looked at how 
transactions are implemented in a single-database case – which is difficult in it of itself with strong 
semantics – and then we looked at two-phase commit, a commitment protocol for implementing 
transactions in a distributed, sharded database.  Recall that the whole purpose we were applying 
sharding on the database was to be able to add more servers to increase the capacity of the database (i.e., 
be able to handle more concurrent requests).  However, with transactions, where two or more shards 
need to coordinate tightly (and hold locks while doing so!), the capacity gain may not be that great.  I.e., 
you will certainly not get, with three shard servers, three times the capacity of each server.   The gain 
you get will very much depend on the workload and how effectively sharding separates transactions: if 
most transactions interact with only one shard, you’ll gain a lot of capacity; if most transactions use 
many shards, you’ll gain nothing, you may actually have worse capacity than if you weren’t sharding.  
So think carefully before you decide to use distribution as a method for increasing your capacity. 
 
Next time we will see how to add fault tolerance into the system through replication, and then how to 
address the semantic challenges raised by this replication. 


